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ABSTRACT

Context. The use of 3D hydrodynamical simulations of stellar surface convection for model atmospheres is computationally expen-
sive. Although these models have been available for quite some time, their use is limited because of the lack of extensive grids of
simulations and associated spectra.
Aims. Our goal is to provide a method to interpolate spectra that can be applied to both 1D and 3D models, and implement it in a code
available to the community. This tool will enable the routine use of 3D model atmospheres in the analysis of stellar spectra.
Methods. We have developed a code that makes use of radial basis functions to interpolate the spectra included in the CIFIST grid of
84 three-dimensional model atmospheres. Spectral synthesis on the hydrodynamical simulations was previously performed with the
code ASSεT.
Results. We make a tool for the interpolation of 3D spectra available to the community. The code provides interpolated spectra and
interpolation errors for a given wavelength interval, and a combination of effective temperature, surface gravity, and metallicity. In
addition, it optionally provides graphical representations of the RMS and mean ratio between 1D and 3D spectra, and maps of the
errors in the interpolated spectra across the parameter space.
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1. Introduction

Spectroscopy is one of the most powerful sources of information
for stellar astrophysics. Accurate interpretation of stellar spectra
is essential for deriving quantities such as the surface tempera-
ture and gravity of stars, their rotation, chemical composition,
radial velocity, and so on, and the same is true for galaxy prop-
erties from integrated stellar population spectra. The accuracy
of the inferred quantities not only depends on the instrumenta-
tion we use to acquire the observations, but also on the models
adopted to interpret them.

Stellar photospheric spectra are commonly analyzed using
classic hydrostatic models of stellar atmospheres, which as-
sume plane-parallel geometry and consider the effect of convec-
tive motions in the energetic balance with mixing-length theory
(Böhm-Vitense 1958). Despite the success of this approach in
reproducing the impact of convection on the temperature gradi-
ent, it cannot account for some features observed in real spectra,
such as the broadening of spectral lines, their asymmetries, or
convective blueshifts. In order to partially compensate for these
drawbacks, micro- and macroturbulence parameters should be
introduced to fit the spectra.

On the other hand, a new generation of 3D hydrodynamical
simulations of stellar atmospheres appeared in the 1980s (Nord-
lund 1982). These models implement a more realistic treatment
of convective motions, and thanks to them it is possible to re-
produce the asymmetries and convective shifts of spectral lines
(Asplund et al. 2000). In addition, the real broadening of spec-
tral lines appears naturally without introducing any extra param-
eters. However, 3D models are not yet extensively used in spec-
tral analysis because of the large computation that they require.

In the last decade, new grids of 3D models of atmospheres
have been produced for a wide range of stellar parameters. Mak-
ing use of the CIFIST grid of 3D simulations (Ludwig et al.
2009) and the ASSεT massively parallel radiative transfer code
(Koesterke et al. 2008), we computed a new grid of 3D spectra
(Ludwig et al. 2022, and references therein). The wavelength
coverage of the spectra spans from 2000 to 30000 Å, and the
parameters of the grid range from 3500 to 7000 K in effective
temperature, [Fe/H]1 from 0 to -3, and log g from 1.5 to 4.5.

In this paper, we describe the strategy and code that we have
developed to interpolate the 3D spectra. Our aim is to provide the
means to use synthetic 3D spectra systematically in the analysis
of stellar spectra, and to finally make 3D simulations of stellar
atmospheres accessible and usable.

Section 2 briefly describes the 3D grid of stellar atmo-
spheres, while our radiative transfer calculations are explained in
Section 3. The method and implementation of the interpolation
code are described in Section 4, along with the limitations and
approximations made. Section 5 is devoted to explaining the cal-
culations of errors for the interpolation. Some examples and ap-
plications are provided in Section 6. Finally, Section 7 presents
a summary of this work.

2. CIFIST grid of 3D model atmospheres

The interpolation software presented in this work builds on a
set of three-dimensional time-dependent simulations of stellar
surface convection, which are part of the CIFIST grid, and were

1 We use the standard bracket notation, [a/b] = log N(a)
N(b) − log

(
N(a)
N(b)

)
�
,

where N(x) represents the number density of nuclei of the element x.
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Fig. 1. Stellar parameters of the 84 three-dimensional models of atmo-
spheres that make up the CIFIST grid.

computed using the CO5BOLD code (Freytag et al. 2002; Wede-
meyer et al. 2004; Freytag et al. 2012). Convective stellar en-
velopes, including the stellar atmospheres, are modeled by nu-
merically solving the hydrodynamical equations of mass, mo-
mentum, and energy conservation in the presence of a constant
gravitational field. The equation of state takes into account the
ionization of H and He, and the formation of H2. The simu-
lated stars are assumed to have a solar-scaled chemical com-
position, adopting solar abundances from Grevesse & Sauval
(1998), with the exception of those for carbon, nitrogen, and
oxygen (CNO), which were updated following Asplund (2005).
Calculations of the multi-group opacities were carried out using
the Uppsala package (Gustafsson et al. 2008). The output sim-
ulations describe a physical volume significantly larger than the
size of granules enclosed in a grid with a typical resolution of
140 x 140 x 150 points. A detailed description of the simula-
tion code, model setup, and calculations can be found in Ludwig
et al. (2009), Tremblay et al. (2013), and Ludwig et al. (2022)
along with descriptions of the limitations of the models.

The final grid of 3D models comprises 84 simulations with
different combinations of surface gravity, chemical composition,
and entropy flux at the bottom of the atmosphere. Figure 1 shows
the coverage in stellar parameters of the grid. Effective tempera-
ture was determined from the temporally and spatially averaged
emergent bolometric flux. For each 3D model, a 1D hydrostatic
model of atmosphere was also derived by linear interpolation of
the ODFNEW model grid by Castelli & Kurucz (2004), which
was also based on the solar abundances of Grevesse & Sauval
(1998).

After completion of a model run, a subset of about 20 uncor-
related snapshots is selected for spectral synthesis purposes. The
selection is based on the requirement that the statistics of the sub-
sample should closely resemble the statistics of the whole run. In
particular, the statistics of the fluctuations in velocity and emer-
gent flux should be preserved. The total time-coverage spans at
least ten times the typical lifetimes of convective cells on each
modeled star.

3. Spectral synthesis

The calculation of stellar model atmospheres and spectra can be
a time-consuming process. This is usually true for 3D models,
but can also apply to 1D models when needed in large num-
bers, as in the most recent grids for Kurucz (Mészáros et al.

2012), MARCS (Gustafsson et al. 2008), and Phoenix (Husser
et al. 2013) models, which can include up to hundreds of thou-
sands of models. A widely extended technique to address this
problem is to interpolate the main thermodynamical variables
along the height of the atmosphere model. However, Mészáros
& Allende Prieto (2013) showed that high-order interpolation of
continuum-normalized fluxes leads to smaller errors than inter-
polation of stellar atmospheric structures. We expect the same
result will hold for 3D models, and therefore we have decided
to interpolate spectra instead of structures. This strategy is also
much more efficient in the 3D case, given that 3D model atmo-
spheres typically have between 104 and 106 more data points
than their 1D counterparts.

For each 3D model atmosphere, we computed a synthetic
spectrum making use of the radiative transfer code ASSεT, Ad-
vanced Spectrum Synthesis 3D Tool (Koesterke 2009; Koesterke
et al. 2008). The radiative transfer calculations on snapshots of
3D model atmospheres are a highly complex task compared to
their 1D counterpart. This code is able to handle arbitrary line
blends, frequency-dependent continuum opacities, and scatter-
ing. These calculations are described in a forthcoming paper
(Ludwig et al. 2022), but we provide a summary below for com-
pleteness.

The output spectra cover a wide range of wavelengths from
3000 to 30000 Å. For any given model, and for each frequency in
the spectrum, a set of ∼2x107 points in the temperature-density
plane is required to provide detailed opacities for every grid
point in all the snapshots. This is dictated by the combination of
the range covered by a given model in the temperature–density
plane, and the required accuracy in the interpolated opacities.
By assuming local thermodynamical equilibrium (LTE), this grid
can be built from the interpolation of a much reduced and pre-
computed data set, with steps of 250 K and 0.25 dex, using cu-
bic Bézier interpolation. The adopted solar abundances are very
similar to the ones used in the 3D models: as stated in the pre-
vious section, the simulations use the Grevesse & Sauval (1998)
except for CNO, for which the values from Asplund (2005) are
adopted, and the spectral synthesis calculations embrace all the
abundances from Asplund (2005). As the main differences be-
tween Grevesse et al. (1998) and Asplund et al. (2005) are pre-
cisely in CNO, the changes are negligible for most purposes.
Continuous absorption from H, H−, and all relevant metals are
taken into account, and line absorption is included in detail from
the atomic and molecular files computed by Kurucz, with some
upgrades, as described in detail in Allende Prieto et al. (2018).
The opacities used in the hydrodynamical simulations are fairly
consistent with those adopted for the synthesis for temperatures
above 3000 K, which are of concern for this work. The effect of
these differences on model construction can be estimated from
the work by Mészáros et al. (2012), and is considered minor.

Two sets of opacities were derived, one with spectral lines
and high spectral resolution (2.7 mÅ at wavelength 3000 Å, ad-
justed with wavelength to keep sampling in velocity space con-
stant), and the other one without lines and low resolution (1Å
at 3000 Å) in order to be used for the continuum spectra. For
each individual snapshot, a spectrum is derived. First, the low-
frequency pre-computed grid of opacities is interpolated to all
grid points of the snapshot. A background radiation field is then
calculated for this grid assuming LTE and including Thomson
and Rayleigh scattering by atomic hydrogen. This radiation field
is later used for the scattering term in the subsequent synthesis
calculation. The line lists employed in the full-opacity calcula-
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tions are the same as those used by Allende Prieto et al. (2018),
and are available online2.

The emergent flux is finally calculated using the opacities
that include spectral lines and the previously computed mean
background radiation field, which is interpolated for all frequen-
cies. The emergent flux is integrated from the top layer down to
optical depths larger than 20 for 21 different angles: 4 equidis-
tant azimuthal angles at an inclination µ = cos θ = 0.0886, 8 at
µ = 0.4095 and 0.7877, plus the vertical direction. Frequency
shifts due to the velocity field are applied to the opacities and
source functions. The final emergent flux is an average from all
the snapshots selected from the simulation.

In order to make a direct comparison between 1D and 3D
spectra, we also derived 1D counterparts for the 3D spectra us-
ing a 1D version of the same radiative transfer code, ASSεT. The
same chemical composition, opacities, and radiative transfer cal-
culations are used, and a microturbulence of 1 km s−1 is adopted
for all grid spectra.

4. Description of the interpolation tool

Given the irregular nature of our grid of 3D models (see Fig. 1),
we choose to use radial basis functions as the interpolation
method. A detailed description of these functions can be found
in subsection 4.1. The following two subsections are devoted to
thoroughly describing the workflow and output of the code. As
the interpolation is a computationally expensive process, and a
dominant factor in the computations described, the calculation is
divided into two steps. The interpolation weights or expansion
coefficients are pre-computed and provided in tables together
with the code, and the final step is done by the code, using the
desired stellar parameters as an input.

The code and expansion coefficient tables are distributed
from the CDS3. The 3D spectra used in the code are preliminary,
and not the final ones to be published in the 3D library (Ludwig
et al. 2022).

4.1. Interpolation method

Every continuous function can be represented as a linear combi-
nation of functions:

f (x) =

m∑
j=1

w jh j(x), (1)

where w j are the expansion coefficients and h j(x) the blending or
basis functions. Given a set of xi data points, their corresponding
data values si = f (xi), and a choice of basis functions, one can
use Eq. (1) to write a linear system of equations.

For multi-dimensional data, the above linear system may be-
come singular. This problem can be addressed by defining a lin-
ear function whose parameters are the distances to the known
data points (Broomhead & Lowe 1988). Thus, the basis func-
tions are radially symmetric around those data points. This ap-
proach is known as the radial basis functions (RBF) method, and
the interpolation condition takes the form:

f (xi) =

m∑
j=1

w jφ(||xi − y j||) = si, (2)

where xi is a multi-dimensional data point, si is the correspond-
ing data value, φ is the RBF, and the norm is usually defined as
2 https://cloud.iac.es/index.php/s/pqJ9cwtJ9GSBraz
3 And at https://cloud.iac.es/index.php/s/LKYXfYXtbqAKNfx

the Euclidean distance between the data point and the centers of
the RBFs, y j, which are taken to be the known data points. We
note that the function is constrained to go through the known
data points. The flexibility of f , and its ability to fit many differ-
ent functions, derives only from the freedom to choose different
values for the weights, which are the only free parameters.

There are several types of RBFs that guarantee a unique so-
lution for the system of equations (Micchelli 1986). One of them
is the thin-plate splines (hereafter TPSs) (Duchon 1976):

φ(r) = r2 log(r), (3)

where r is the Euclidean distance: r = ||xi − y j|| . TPSs have
the advantage of producing smooth functions, as spectra are ex-
pected to be, with no free parameters to be tuned manually. The
final matrix representation of the interpolation condition is:


r2

1,1 log(r1,1) r2
1,2 log(r1,2) · · · r2

1, j log(r1, j)
r2

2,1 log(r2,1) r2
2,2 log(r2,2) · · · r2

2, j log(r2, j)
...

...
. . .

...
r2

i,1 log(ri,1) r2
i,2 log(ri,2) · · · r2

i, j log(ri, j)



w1

w2
...

w j

 =


s1

s2
...

si

 .
The expansion coefficients [w j] are determined by solving

this linear system of equations for the set of known data points.

4.2. Code workflow

We have implemented RBF interpolation in an IDL code which
uses LU decomposition to solve the previous linear system.
The code offers two different options to perform the interpola-
tion: either interpolating the 3D normalized spectra, or the ra-
tio between the 3D normalized spectra and their 1D counter-
parts (hereafter referred to as straight and ratio options of inter-
polation, respectively). Although stellar spectra show relatively
smooth variations as a function of the stellar parameters, the ratio
between these two types of model better captures the line asym-
metries present in the 3D fluxes, as illustrated in Figure 2, and
this is the option we recommend. The code workflow described
in this subsection corresponds to the ratio option of interpola-
tion. The same procedure is applied to the straight interpolation
option, but in this case the result of the ratio interpolation is fi-
nally multiplied by the interpolation in the internally stored 1D
normalized spectra.

The spectra are provided at high resolution: between 3000
and 30 000 Å the number of wavelength points is on the order
of 3.5 × 106, and each wavelength is interpolated independently.
The sampling is sufficient to resolve the velocity field, and it is
equally spaced in frequency and velocity space. The same wave-
lengths are adopted for all the models. Due to limitations in com-
putation time, and in order to provide an interpolated spectrum
on the fly for practical use in research using a workstation or
even a laptop computer, we divided the process in two steps.
Therefore, some quantities have been pre-computed and stored.

As we describe in the previous subsection, to perform RBF
interpolation, we have to build a matrix of weights (or expansion
coefficients), and then solve a linear system of equations for a
certain coordinates. The expansion coefficients have been pre-
computed. As the interpolation is performed independently for
each wavelength, we have as many vectors of weights as wave-
length points.

Our initial inputs are the 3D and 1D fluxes from the grid
of spectra, and their corresponding continuums (see section 6.1
for details of the 3D continuum corrections). We first selected a
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Fig. 2. Variations of the 3D flux (left-hand panels) and the ratio of the 3D and 1D model fluxes in the vicinity of the Ca I 6162.18 Å line as a
function of Teff (top panels; Teff= 4001, 4499, 5061, 5473, 5923, 6238, and 6456 K), log g (middle; log g = 3.5, 4.0 and 4.5) and [Fe/H] (lower
panels; [Fe/H]= -1, -2 and Teff = 5923, -2 and Teff = 6287 K, and -3).

wavelength reference array, in this case the 3D spectrum with the
highest resolution. This is necessary because the algorithm that
optimally chooses frequencies for the 3D case produces slightly
different results for each model and snapshot. All fluxes, 3D and
1D, were normalized and interpolated using cubic splines to this
wavelength reference array. In addition, 1D spectra were con-
volved with a Gaussian profile to a macro-turbulence of 0.21
kms−1 (0.5 kms−1 FWHM)(see section 6.2 for details on the
broadening of 1D spectra). Finally, the ratios between 3D and
1D were stored, and are used as the known data values, si.

In order to obtain the weights array, w, for each wavelength,
we first built a matrix M with the r2 log(r) elements, where r
represents the Euclidean distances between points in the grid.
To do so, the stellar parameters should be first scaled due to the
significantly different scales (log g has steps in the grid that are
103 larger than Teff), and were normalized between 0 and 1. Sub-
sequently, we solved the linear system Mw = S , where S con-
tains the ratios of normalized fluxes 3D/1D of all models, si, at
a certain wavelength. The final vector of weights contains 84 el-
ements, one per model. All the vectors for all wavelengths are
stored in a FITS table that can be found in the software package.

The IDL code that is available for the user is devoted to the
second part of the interpolation. The user provides a wavelength
range as input, together with a set of stellar parameters: Teff ,
log g, and [Fe/H], and the wavelength and flux arrays of a cor-
responding 1D spectrum, along with its resolution. In the case
where no 1D spectrum is provided, straight interpolation will be
performed. For each wavelength, a matrix with the r2 log(r) el-
ements is built, where r are the distances from the grid points
to the set of stellar parameters provided. Afterwards, the linear
system with the stored weights is solved using the matrix built
earlier.

The evaluation of the linear system provides the interpolated
3D/1D flux ratio. As both the 3D and 1D fluxes were obtained
with the same code and opacities, we expect these corrections
to be of general application, even to different families of simi-
lar 1D models. Obviously, the closer the line opacities used are
to those adopted in the computation of the ratios, the more ac-
curate the results will be. In order to recover the 3D spectrum,
we should multiply this quotient by a 1D spectrum; the code can
take two arrays of wavelength and 1D normalized flux as input
to do so. The input 1D spectrum should have the same micro-

and macroturbulence as the ones in our grid: ξ =1 kms−1 and
υmac=0.5 kms−1 (FWHM). The code then reduces the resolution
of the ratio by convolution with a Gaussian kernel to equate it
to the input 1D spectrum, and then multiplies the two. Other-
wise, a 1D Kurucz model from the CIFIST grid is interpolated
for this purpose using the same RBF interpolation. It is important
to note that, as the computation of 1D spectra is less expensive,
it would be more precise and recommended to compute the 1D
model specifically for the required stellar parameters, and not to
interpolate it. It is important to stress that the wavelength interval
for interpolation is, within the range available in the model grid
(3000–30,000 Å), entirely the choice of the user. As the RBF in-
terpolation is performed independently for every wavelength, the
size of the wavelength window has no impact on the accuracy of
the interpolation at any particular wavelength in that window.

In summary, the code provided can be used to predict 3D
corrections for any given input 1D spectrum. The code will in-
terpolate the precomputed 3D/1D flux corrections, smooth them
to the appropriate resolution of the input 1D spectrum, and mul-
tiply them by the input 1D spectrum to return an approximate
predicted 3D spectrum. The code can also work in a simplified
mode, in which the output 3D spectrum will be returned when no
1D input spectrum is provided. We believe the methodology of
storing and interpolating 3D/1D flux corrections is of general ap-
plication for the practical determination of chemical abundances
and stellar parameters taking into account hydrodynamical ef-
fects from the analysis of stellar spectra. In this sense, the code
provided with this work can be considered a prototype for future
applications.

5. Interpolation errors

In order to provide an estimation of the performance of the inter-
polation model, we carried out a leave-one-out cross-validation.
We systematically left out from the dataset one 3D/1D quotient,
and used the remaining n-1 elements in the grid to derive the
interpolated 3D/1D ratio corresponding to the stellar parameters
of the model that was left out. Afterwards, we computed the dif-
ferences between the original data and the interpolated ratios.

To finally obtain the differences between the spectra of the
3D models and their interpolated counterparts, we multiplied the
quotients by the corresponding 1D spectrum. Those differences
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Fig. 3. Quotient between the standard deviation (STD) of errors derived
from the interpolation using the quarter subgrid as the model, and the
STD of the errors using the half subgrid as model, for all wavelengths.
A horizontal line is drawn at 2.0.

were adopted as the upper limits of the errors for the interpolated
spectra at the points of the grid. This process was repeated for
all models and all wavelengths. The errors between grid points
are evaluated by interpolating the errors derived from the cross-
validation exercise using the same method. For straight interpo-
lation, the same procedure is followed, but here the interpolated
ratio is multiplied by a spectrum interpolated in the grid of 1D
spectra.

The RBF interpolation uses spline functions, which means
that the interpolated spectra at the grid points will always corre-
spond exactly to the value of the point. The leave-one-out cross-
validation generally gives a pessimistic estimate of the perfor-
mance of a model, due to the fact that the model is trained with
less grid points. In our particular case, the distance to the nearest
grid points is typically doubled when we suppress a data point.
To constrain and provide more realistic errors, we performed the
following test to estimate how errors scale with the step size of
a grid.

For statistical significance, we used an extensive 1D grid of
700 spectra spanning approximately the same parameter range
as the 3D grid. We created two subgrids, one taking half the
points from the original grid, and a second again taking half of
the points from the first (a quarter from the original grid). Grid
points are equidistant in Teff , log g, and [Fe/H]. The distance be-
tween points of the one-quarter grid is doubled compared to the
one-half grid. For all the wavelengths from 2000 to 30000 Å, we
interpolated the spectra at 175 points from the original grid using
both the one-half and the one-quarter grids as input. Finally, for
each frequency, we calculated the standard deviation of the er-
rors, that is, the difference between the interpolated and the data
flux. The quotient between the standard deviation (STD) for the
one-quarter grid and that for the one-half grid is over 2.0 for the
vast majority of frequencies (see Fig. 3).

We stress that this experiment is only targeting the deriva-
tion of the scaling factor in the uncertainties as a function of the
grid step size. This factor needs to be applied to the independent
leave-one-out experiment described at the beginning of this sec-
tion. As the scaling factor is typically in the range between 2 and
3, we conservatively divided the errors from the cross-validation
by a factor of 2 to account for the doubling of the maximum dis-
tance between grid points during the interpolation process. There
is no reason to expect a different scaling behavior for 3D and 1D
models.

Despite the fact that we divide the error estimates from the
leave-one-out tests by a factor of 2, it is important to note that at

the edges of the interpolation grid these are still overestimated
because of the nature of the leave-one-out cross-validation pro-
cess. Once the grid point on the edge is included, and the interpo-
lation is performed within the grid, the accuracy of the interpola-
tion should improve. As we see below in practical applications,
the uncertainty in the interpolations is generally under 2 %, al-
though there are particular regions of the parameter space where
the accuracy degrades somewhat.

6. Limitations of the tool

There are two main issues concerning the treatment of the spec-
tra preceding the interpolation. These should be noted because
they can diminish the precision of the final interpolated spectra.
Nevertheless, as we explain in this section, the introduced errors
are actually negligible for most wavelengths.

6.1. 3D continuum correction

As noted above, the interpolation tool takes as input a normalized
flux spectrum. However, continuum spectra for the 3D models
were computed including the opacity from hydrogen lines, while
the 1D continua were calculated without them4. While including
hydrogen lines as continuum is useful to analyze lines sitting in
their wings, in most cases these lines are not used and, on the
other hand, the wings of hydrogen lines can provide valuable
information. In order to provide useful theoretical spectra to be
compared with real stars, hydrogen lines must be present in the
final interpolated spectra, and therefore they should be removed
from the continuum before normalization.

We clean hydrogen lines from the continuum by first divid-
ing the 3D continuum by its 1D counterpart to make the hydro-
gen lines stand out and reduce the error in this procedure. After-
wards, we apply a moving percentile filter to this quotient in or-
der to fit its upper envelope. Specifically, for each wavelength we
select an interval around it of a certain width, and calculate the
distribution of the corresponding ratios of 3D and 1D continuum
fluxes. We then select the desired percentile of the distribution
and assign it to the central wavelength.

The values of the width and percentile for the filter were
customized for four different wavelength intervals and for each
spectra individually. The wavelength intervals are slightly dif-
ferent from spectrum to spectrum, but cuts were approximately
made at 3675, 13000, and 16000 Å. The width of the interval was
around 2000 points for the UV and from 2·104 to 7·104 points for
the remaining wavelengths. Finally, the percentile was chosen to
be 70% in the UV, and around 90% at longer wavelengths.

As an example, Figure 4 shows the fit to the upper envelope
of the continuum ratios, as well as the different wavelength in-
tervals created to fit the quotient, for a simulation with solar-like
parameters. The final 3D continuum without hydrogen lines is
shown superimposed over the original one in the middle panel.
To finally obtain the errors associated with fitting the continuum
that we need to add to areas without a hydrogen line, we plot-
ted the difference between the normalized fluxes when using the
original continuum and the corrected one. The lower panel of
Figure 4 displays those differences, where hydrogen lines that
were missing in the original normalized 3D spectra now appear
in the new normalized spectra. As can be seen in the figure, out-

4 The differences between 1D and 3D continua regarding the hydrogen
lines stem from the design of the software package used to compute the
3D opacities
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Fig. 4. 3D continuum correction of the model with stellar parameters Teff=5865K, log g=4.5, and [Fe/H]=0.0 dex. Upper panel: Fit to the upper
envelope of the quotient between the 3D and 1D continuums. The different wavelength ranges used for the fit are plotted in different colors. Middle
panel: Original 3D continuum, shown in black, while the new continuum fitted is depicted in red. Bottom panel: Difference between the 3D
spectrum normalized with the original continuum, and the 3D spectrum normalized with the new fitted continuum. The shaded area corresponds
to the ±0.2% of the normalized flux.

side the areas influenced by the wings of hydrogen lines, the
differences from the original spectra are smaller than 0.2%.

Because of the lack of smoothness in the continuum fit to the
Balmer discontinuity, the spectra around these wavelengths may
not be reliable, and should be used with caution.

6.2. Broadening of 1D spectra

The second main issue concerns 1D spectra. Theoretical clas-
sical models are computed with a certain microturbulence, and
should afterwards be convolved with the corresponding macro-
turbulence. Doing so, we mimic the broadening of spectral lines
associated with velocity fields missing from 1D models because
of their hydrostatic nature. Although there are experimental re-
lationships between macroturbulence and effective temperature
(e.g., Valenti & Fischer 2005), no theoretical determinations are
currently available. The absence of turbulent or velocity broad-
ening in 1D spectra could therefore enhance the differences be-
tween 1D and 3D model fluxes, making the interpolation more
difficult. Hence, we have to select certain micro- and macrotur-
bulence to broaden the 1D spectra prior to interpolation.

In order to select appropriate values for the macroturbulence,
we performed the same test for two different sets of this param-
eter. Our first approach was to select the macroturbulence for
each 1D spectrum that minimized the differences between this
latter and its corresponding 3D spectrum. The second approach
was to select the same macroturbulence for all models. This con-
stant value should be enough to smooth the spectrum, removing
small features that are never visible and not high enough to blur
spectral lines. We choose and υmac=0.5 kms−1 (FWHM), using
a Gaussian profile for the convolution. This value may seem too

small; a typical value for the Sun is υmac=3.4 kms−1 (Allende
Prieto et al. 2001). However, the grid covers a wide range in stel-
lar parameters, and we have to choose a value that does not blur
the spectral features in any of the stars included in the parameter
space of the grid. For both cases ξ=1 kms−1.

With these two different sets of parameters (ξ, υmac), we
broadened each 1D spectrum to be later used in the interpola-
tions. We selected for the test the wavelength range from 6156
to 6173 Å, populated by a strong Ca I line and other features.
Due to its relative complexity and range of line depths, this re-
gion challenges our interpolation tool. For each 3D model, we
created a subgrid with all the 3D/1D quotients except the one
corresponding to the selected model. We then used this subgrid
to calculate the interpolated 3D/1D ratio corresponding to the
stellar parameters of the selected model. The ratio was then mul-
tiplied by a 1D spectrum with the same micro and macroturbu-
lence as the modeled one in order to recover the 3D interpolated
spectrum. Finally, we derived the RMS between the interpolated
spectrum and the original 3D spectrum that was dropped from
the grid.

We found that the derived RMS was almost equal for all sets
of micro and macroturbulence values, which indicates that the
selection of these parameters has little impact on the interpola-
tion results. As the choice must be consistent with the input 1D
spectrum that is to be multiplied by the 3D/1D ratio in order to
derive the 3D spectrum, one would naively expect the choice to
be irrelevant, and this is exactly what this test demonstrates.

Figure 5 illustrates the results of this test. The first row of
plots corresponds to interpolations performed with 1D spectra
broadened with constant υmac, while the second row corresponds
to 1D spectra broadened with a fitted υmac for each spectrum. De-

Article number, page 6 of 14



S. Bertran de Lis et al.: Interpolation of 3D models of atmospheres

Fig. 5. RMS of the differences between the 3D flux and the interpolated 3D flux when the corresponding point is subtracted from the grid. The
upper row corresponds to interpolations where all 1D spectra were broadened with the same macroturbulence, while for the lower panel, the
macroturbulence was individually fitted for each spectra. A logarithmic color scale is used for plotting purposes.

spite small differences that can be seen in the areas correspond-
ing to high Teff and log g, both set of plots are remarkably sim-
ilar. Therefore, we adopted the simplest option: constant values
for both the microturbulence and macroturbulence.

7. Code output

The code will provide three arrays with the 3D interpolated and
normalized flux, associated wavelengths, and an array of interpo-
lation errors. In addition, the code can produce a two-page doc-
ument with several graphics intended to help the user to evaluate
the 3D effects, the quality of the interpolation, and the improve-
ment of using 3D interpolations against 1D theoretical spectra in
the specified wavelength range. This information allows users to
evaluate whether, despite the errors in the interpolation, the 3D
interpolated spectra is a fair approximation of an exact 3D cal-
culation and whether such calculation differs significantly from
a 1D model. In particular, the plots produced (see section 8 for
examples and further details) are: (1) Mean(F3D/F1D): In or-
der to check for possible 3D effects present in a given wave-
length range, we plot contour maps of the mean normalized flux
ratio 3D/1D averaged over all requested wavelengths, for each
[Fe/H] value in the grid. (2) RMS(F3D-F1D): In order to com-
pute the differences between 3D and 1D, we produce contour
maps of the RMS of the difference between the 3D and 1D nor-
malized fluxes, at the wavelength range requested and for each
[Fe/H]. (3) RMS(F3D-F3Dint)/2: Contour maps of the RMS of
the difference between the 3D normalized flux and its 3D in-
terpolated counterpart (removing the corresponding point of the
grid) in the wavelength range requested and for each [Fe/H]. A
reduction factor of 2 is applied to this difference (see Section
5). (4) RMS(F3D-F1D)/RMS(F3D-F3Dint)/2: Contour maps of
the ratio between plot 2 and 3. The aim of this plot is to show
which is a better approximation to actual 3D calculations, the
1D spectrum or the 3D interpolation, and quantify the improve-
ment. If 1D fits better, contours appear in grayscale. It is not rec-
ommended to use the interpolation in this case. (5) Mean(|F3D-
F3Dint |/2): The errors of the interpolation are shown in these
graphs, where contour maps are plotted for the mean absolute er-

ror, averaged over all requested wavelengths, and for each [Fe/H]
value. (6) Result of the interpolation: 1D spectrum (either pro-
vided or interpolated) and 3D interpolated spectrum with the cor-
responding errors.

It is important to take into account the fact that the described
graphics provide quantities averaged for the whole wavelength
range. If the wavelength range requested is too wide, continuum
regions will dominate the result, and any 3D effect will be diluted
in the contour plots. In addition, wavelength-averaged errors will
also be smaller than those for selected parts of lines, for example
when only the core or the wings of a spectral line are considered.
Finally, we note that the 1D spectrum used for the contour plots
is not the one provided by the user, but the 1D from our grid
computed for the same parameters as the 3D one. The following
section shows practical examples of application of the code, its
input and output data, and the output graphics.

8. Output examples

We selected four spectral regions of interest to test the perfor-
mance of the interpolation code. For each region we show the
output diagnostic plots described in Section 7. These examples
also highlight some issues that should be taken into account for
proper interpretation of the diagnostic plots.

It is important to note that the 1D spectra used for the com-
parisons have hardly been broadened, with an adopted macro-
turbulence of υmac=0.5 kms−1 (FWHM). Therefore, in regions
of the Teff-log g plane where macroturbulence is much greater
(i.e., for high temperatures and low gravities), 3D effects may ap-
pear artificially enhanced. A more adequate comparison would
involve broadening the 1D spectra with appropriate values of the
micro- and macroturbulence for each Teff and log g.

The first two rows of contour plots in Figures 6 to 9 are
shown in order to highlight 3D effects averaged over the selected
wavelength range. The first one shows the mean ratio 3D/1D for
the model spectra in the grid, and the second one depicts the root
mean square (RMS) between the 3D and the 1D model spectra.
We selected the RMS as a measure of the average differences in
flux, regardless of their direction (positive or negative). We warn
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the user that minor systematic differences between the 3D and
1D continua may be present, which can increase the actual 3D-
1D differences. These are real differences, some of which can
survive the normalization process. They are mostly undetectable
in the optical and near-infrared (NIR), but become prominent in
the UV, or at longer wavelengths near the Paschen or the Brack-
ett series. The RMS plots will be more sensitive than the 3D/1D
plots to small discrepancies between models, which are typically
what most users are interested in. In these figures, the range of
the color bar in all cases covers ±2σ from the average. These two
first types of plots are independent of the interpolation method
used (straight or ratio), and simply provide a glance at possible
3D effects.

The third row of the contour plots contains the result of the
leave-one-out cross-validation performed to find the errors of
the interpolation. For each point of the grid, the 3D interpolated
(3Dint) spectrum is computed using a grid that contains all spec-
tra except the one we are interpolating. We then calculate the
difference between the model and the interpolated spectra. Fi-
nally, in order to avoid an overestimation of the errors, errors are
divided by the reduction factor 2 (see Section 5). The contour
plots show the RMS of this difference (F3D-F3Dint)/2, which
will change depending on the interpolation method that is used.
For these figures, the ratio interpolation option is always used.

The fourth row of panels in the plots depicts the ratios be-
tween quantities in rows two and three. When the difference
F3D-F1D is lower than (F3D-F3Dint)/2, the 1D model spectrum
is closer to the 3D model than the 3Dint. In that case, the interpo-
lation is not improving the model spectrum but the opposite, and
is depicted in grayscale. There are two main reasons why this
can happen: either errors in the interpolation are significant, and
larger than the 3D-1D differences, or we are close to the edges
of the grid, where the interpolation errors are probably overes-
timated due to the fact that an extrapolation was performed to
compute them. When the 3Dint flux fits the 3D model better, con-
tours are depicted in color scale. For these plots, the range of the
color bar will always be between 0 and 10.

Finally, the last contour plots show the mean errors of the
interpolation. These errors cannot be understood as a standard
deviation of a statistical distribution of errors, but as an absolute
measurement of the deviation of the interpolation from the 3D
model. As for all other contour plots, it is an average over the
wavelength range of interest.

To conclude with the series of diagnostic plots, the 3D inter-
polated spectrum is shown together with its errors for the stel-
lar parameters specified by the user. The 1D spectrum is also
plotted, that is, either the one provided by the user or the 1D
spectrum interpolated from our grid, with υmac=0.5 kms−1 and
ξ=1kms−1, which is the case for the figures in this paper. In ad-
dition, the wavelength range and stellar parameters are shown.

8.1. Infrared Ca triplet

The first wavelength range selected for the tests comprises the
strongest line from the Ca II IR triplet, at 8542.09 Å (Fig. 6).
This triplet is broadly used in stellar spectroscopy because of its
strength, its detectability over a wide range of atmospheric pa-
rameters, and the fact that it lands in a region where CCD detec-
tors are highly efficient. It is the focus of massive spectroscopic
surveys such as RAVE (Steinmetz et al. 2020) or the Radial Ve-
locity Spectrograph of the Gaia mission (Sartoretti et al. 2018;
Katz et al. 2019).

As we can see from the first rows of panels, despite the
line becoming weaker, 3D effects become more significant as
we move towards lower metallicities. At [Fe/H]<0, the spectral
line has a larger equivalent width (EW) in the 3D case, because
3D/1D<1, and differences in flux can reach up to 6% for dwarf
stars at [Fe/H]=-2. Although 1D spectra are not broad enough,
macroturbulence does not change the EW of the line, and there-
fore we can safely conclude that at subsolar metallicity 1D Ca
abundances would be overestimated.

The performance of the interpolation is satisfactory for all
stellar parameters given the reduced RMS of the 3D-3Dint, which
is under 3% for almost the whole grid. However, at the lower
gravity end of the grid, the interpolation is not reliable. As men-
tioned above, this is probably due to the fact that it was necessary
to do an extrapolation in these cases to derive the 3Dint spectrum
during the leave-one-out cross-validation, and therefore the dif-
ference 3D-3Dint will appear overestimated around these low-
gravity points of the grid.

The fourth line of contour plots shows that, in this case, the
3D interpolation is highly recommended, as it reproduces the
real 3D spectrum four times better than the size of the 3D-1D
differences. In addition, errors are below 0.12%, with the excep-
tion of the low-gravity edges of the grid.

The last plot shows the 3D interpolated spectrum together
with its errors, which are visible in the wings of the line as
shaded areas around the spectrum, although they are nearly in-
visible in this case, hidden by the 3D curve. The 1D spectrum
(υmac=0.21 kms−1 and ξ=1kms−1) is also depicted for compari-
son. The 3D interpolated spectrum has wider wings, and clearly
shows a redshift of the core. This is a limitation of 3D model
atmospheres —and is not related to the interpolation—, which
show redshifted cores in strong lines with EW>100 Å that are
not observed in stars (Allende Prieto et al. 2009).

8.2. CO molecular band

We select a CO molecular band in the IR between 1.6611 and
1.6648 µm. CO features in the K and H bands are frequently
used to measure carbon abundances in late-type stars, and car-
bon isotopic ratios. This particular band is now of great interest
because it is included in the spectral range of the APOGEE sur-
vey (Majewski et al. 2017), which offers a growing public data
base with nearly half a million spectra (Jönsson et al. 2020; Ab-
durro’uf et al. 2021).

The corresponding diagnostic plots are shown in Fig. 7. Dif-
ferences between 3D and 1D arise at high metallicities, and are
particularly significant for giants. This may be partially caused
by the low micro- and macroturbulence used to calculate 1D
spectra. On the other hand, the 3D-1D differences seen in the
contour plots at low metallicity are minor, because the molecu-
lar band is barely detected in this case.

The 3D interpolation is relatively reliable for all stellar pa-
rameters in light of the RMS(3D-3Dint) contour plot. Regard-
ing the Ca II example, the low-gravity end of the grid tends to
present interpolations of poorer quality, with larger errors. This
will probably be the case regardless of wavelength, because the
extrapolation of these sharp ends of the grid during the leave-
one-out cross-validation may be of very poor quality.

Despite the values of RMS(3D-3Dint) suggest the results are
reliable, we find that interpolation of 3D models is not recom-
mended at [Fe/H]≤-2, or even at [Fe/H]=-1, for most of the Teff-
log g pairs of parameters, given that the 3D-1D differences are
very small.
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Fig. 6. Diagnostic plots for the Ca II spectral line at 8542.09 Å. Effective temperature is expressed in ×103 K. We note that in the bottom-right
panel, the uncertainties (gray shadow) are not visible due to their small size.
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Fig. 7. Diagnostic plots for the CO molecular band around 16611-16640 Å. Effective temperature is expressed in ×103 K.
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Finally, the CO band is shown for a cool subgiant at [Fe/H]=-
0.8. Errors, as already depicted in the contour plots, are around
1% for this set of parameters. The 1D spectrum clearly lacks
broadening, although a proper macroturbulence convolution by
itself would not reconcile the differences with the 3D spectrum.
The strong features at the edges of the wavelength range corre-
spond to Fe I transitions.

8.3. Lithium resonance line

The measurement of lithium abundance is relevant in many
fields, such as the study of stellar interiors, primordial nucle-
osynthesis, stellar evolution, and exoplanet hosts. There are very
few spectral lines available to measure its abundance, and the
most popular one is the resonance doublet at ∼6707 Å.

Because of the importance of lithium abundance, many stud-
ies have been devoted to exploring departures from LTE and
3D effects; for example Carlsson et al. (1994); Asplund et al.
(1999, 2003); Collet et al. (2007); Wang et al. (2021). These
studies concluded that both nonLTE and 3D effects are relevant
for this transition, and its relative importance strongly depends
on the stellar parameters. One-dimensional nonLTE corrections
are largest for cool stars: at low Li abundances, overionization
dominates and the correction is around +0.2 dex, while for high
Li abundances, the line gets strengthened due to resonance scat-
tering, and 1D nonLTE effects reach -0.6 dex for dwarfs and
even more for giants (Carlsson et al. 1994). When tempera-
ture inhomogeneities are taken into account in 3D models, the
1D LTE abundances in metal-poor subgiants and dwarfs with
Teff ∼6000 K should be corrected by -0.2 dex. Corrections are
more severe in red giants, reaching -0.5 dex.

The steep temperature variations in 3D model atmospheres
cause departures from LTE larger than in 1D. Indeed, the large
3D LTE effects are in general compensated by 3D nonLTE cor-
rections, which work in the opposite direction for the Li spectral
line. In the case of the Sun, for example, nonLTE models reduce
the EW of the line roughly by 20%, which is close to the increase
in 3D LTE (Asplund 2005; Wang et al. 2021).

We explore 3D LTE effects in this line with our interpola-
tion code, and compare our results with the literature. We select
the wavelength range between 6707.6 and 6708.1 Å, and the re-
sults are shown in Figure 8. The most remarkable behavior of
the 3D-1D differences arises at high metallicities and low tem-
peratures, where a sharp dependence on gravity can be found. In
this region of stellar parameters, the Li line has a much smaller
EW in 1D than in 3D, while for giants it shows the opposite be-
havior. As we move towards [Fe/H]<-1, the severe changes with
log g disappear, and 3D-1D differences diminish as the line loses
strength. At [Fe/H]= −2, the line is smaller in 1D as we move
to low temperatures. At [Fe/H]= −3, we do not see any differ-
ence between 3D and 1D, but a correction of 4(3D-1D)=-0.2dex
at [Fe/H]=-3.6, Teff ∼6000 K, and log g ∼4.5 has been reported
(González Hernández et al. 2008). This is due to the fact that,
at such low metallicities, the Li transition is very weak, and very
small differences in EW can lead to appreciable changes in abun-
dances.

According to our results, the 3D interpolation with our code
is appropriate at almost all the stellar parameters studied, be-
coming poorer at low metallicities, where the errors of the in-
terpolation are greater than the differences in fluxes. However,
as highlighted above, nonLTE corrections are large for this res-
onance transition. As a resonance line, it originates in the outer

atmosphere where 3D models predict a steep variation in tem-
peratures, which make it more prone to departures from LTE.

Finally, we show the 1D and 3D spectra for the severe case of
a dwarf with high metallicity and low temperature. As advanced
by the contour plots, the 1D line is much smaller, and the abun-
dances derived with a 1D LTE model would be overestimated
compared to those of the 3D LTE model.

8.4. Hα

Our last example is the Hα line. This line is important because
it can be used to determine effective temperatures, as the wings
of the line are especially sensitive to small changes in the ther-
mal structure of the atmosphere (e.g., Cayrel 1988). Our diag-
nostic plots do not show dramatic differences as in the case of
lithium, but small differences can be observed, and in general
the line would be slightly weaker in a 3D calculation than in its
1D counterpart.

The wavelength range that we have selected is wide enough
to include several transitions in the wings of the Hα line, and
therefore one should be cautious when analyzing the results.
At high metallicities and low temperatures, Hα diminishes its
strength, and the spectral features in the wings become more
visible. The differences seen in this range of temperatures are
probably dominated by these other lines rather than by the Hα
line itself. On the other hand, the core of the line can be misrep-
resented for giants in 1D because the microturbulence for these
spectra was selected to be 1 km s−1 for all stars.

Besides the possible interferences mentioned, we can still
detect differences between 3D and 1D interpolations that reach
∼5% in flux in giant stars, and ∼3% for dwarfs. In general, errors
in the 3D interpolation are small, and therefore the interpolation
code is providing useful results.

Finally, in the bottom panel of Figure 9 we show Hα for a
dwarf star at low metallicity and high temperature. As can be
seen, the core of the line is much more intense in 3D. The wings
of the line are also different, and the ratio between 3D and 1D
changes as we move through the wing. Close to the core, the 3D
spectrum is narrower, and at ∼2.5 Å from the core this behavior
is inverted. Therefore, if we use the inner part of the wings to
fit the temperature with a 1D model, we will be overestimating
the effective temperature, because the line is wider for higher
temperatures. On the contrary, if we fit the wings further than
2.5 Å from the core with a 1D model, we underestimate the
effective temperature compared to the 3D result.

NonLTE effects may play an important role in the Hα line.
Przybilla & Butler (2004) studied the behavior of 1D LTE mod-
els compared to that of 1D nonLTE models for the Hα line in the
Sun, and found more intense line cores in the nonLTE case. For
the solar case, we do not find any difference between 3D and 1D
spectra regarding the core of the line. However, nonLTE correc-
tions in 1D cannot be extrapolated to 3D. Leenaarts et al. (2012)
studied the same line for the Sun with 3D nonLTE models and
also found a more intense core compared to our 3D LTE mod-
els. A quantitative analysis would be necessary to draw further
conclusions about nonLTE corrections to 3D models for the Hα
spectral line.

A word of caution about the core of Hα and other very in-
tense lines is necessary, because they are most likely formed
in layers where models become unrealistic because of missing
physics such as magnetic fields and unresolved shocks.
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Fig. 8. Diagnostic plots for the Li resonance lines at 6707.6 and 6708.1 Å. Effective temperature is expressed in ×103 K.
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Fig. 9. Diagnostic plots for the Hα line at 6562.72 Å. Effective temperature is expressed in ×103 K.
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9. Results and Conclusions

We present an algorithm and a tool developed to interpolate
spectra from the CIFIST grid of 3D hydrodynamical simulations
of stellar atmospheres. The implementation of the interpolation
algorithm is carried out using IDL, and we describe its workflow
here in detail. As input, the code takes a wavelength range, a set
of stellar parameters (the interpolation point), and optionally a
1D spectrum together with its spectral resolution. If a 1D spec-
trum is provided, the code interpolates the ratio 3D/1D of nor-
malized fluxes, which yields lower errors. Otherwise, a straight
interpolation of the 3D grid is performed. The code returns three
arrays with wavelength, interpolated and normalized 3D spectra,
and interpolated flux errors. In addition, several diagnostic plots
are provided at request that can be used to quantitatively analyze
the importance of the 3D effects, the quality of the interpolation
in terms of errors, and the improvement of the 3D interpolated
spectrum over a 1D spectrum.

We selected some spectral regions of interest to show exam-
ples of applications of the interpolation code, which are also use-
ful to further explain how the code is used and its limitations. In
particular, we demonstrate the performance of the code through
the diagnostic plots of the IR Ca I triplet, the CO molecular band
at 16611Å, the Li resonance, and the Hα lines.

The expected errors in the interpolated flux are in general
under 2%, which allows the user to check whether or not 3D
abundance correction may be important in practical applications.
Nevertheless, regions like the Balmer discontinuity may not be
as reliable, and in general errors are highly dependent on the
wavelength range and the target stellar parameters. More accu-
rate predictions are clearly desirable, but we deem the strategy
described in this paper —based on flux ratios and interpolation
with radial basis functions— to be a good first step toward mak-
ing the predictions from 3D models accessible to researchers. We
encourage users not to make blind use of the code: we strongly
recommend examining the output plots prior to systematic use
of the code. Our tests demonstrate the potential of the code in
identifying differences between predicted spectra from 3D and
1D LTE model atmospheres, and the overall small errors in the
interpolated spectrum.

Finally, it is of utmost importance to stress that, sometimes,
3D LTE corrections are compensated for by nonLTE effects.
Therefore, caution should be exercised because all the calcula-
tions in the CIFIST grid have been performed assuming LTE.
When departures from LTE are important, they can be quite dif-
ferent in 1D and 3D, and the differences between the two can
easily be much larger than those we find in our calculations. In
addition, we consider flat values for the micro- and macroturbu-
lence velocities in our 1D calculations, and ignore stellar rota-
tion, which hampers comparisons with observations.
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